On Mordell-tornheim Sums and Multiple Zeta Values
نویسندگان
چکیده
RÉSUMÉ. Nous prouvons que toute somme de Mordell-Tornheim avec des arguments entiers positifs peut s’écrire comme une combinaison linéaire rationnelle de valeurs prises par des fonctions multi-zêta ayant le même poids et la même profondeur. Selon un résultat de Tsumura, il s’ensuit que toute somme de Mordell-Tornheim ayant un poids et une profondeur de parité différente peut s’exprimer comme une combinaison linéaire rationnelle de produits de valeurs prises par des fonctions multi-zêta de profondeur plus petite.
منابع مشابه
Computation and structure of character polylogarithms with applications to character Mordell-Tornheim-Witten sums
This paper extends tools developed in [10, 8] to study character polylogarithms. These objects are used to compute Mordell-Tornheim-Witten character sums and to explore their connections with multiple-zeta values (MZVs) and with their character analogues [17].
متن کاملReducibility of Signed Cyclic Sums of Mordell-tornheim Zeta and L-values
Matsumoto et al. define the Mordell-Tornheim L-functions of depth k by LMT(s1, . . . , sk+1;χ1, . . . , χk+1) := ∞ ∑
متن کاملGeneralized Log Sine Integrals and the Mordell-tornheim Zeta Values
We introduce certain integrals of a product of the Bernoulli polynomials and logarithms of Milnor’s multiple sine functions. It is shown that all the integrals are expressed by the Mordell-Tornheim zeta values at positive integers and that the converse is also true. Moreover, we apply the theory of the integral to obtain various new results for the Mordell-Tornheim zeta values.
متن کاملComputation and experimental evaluation of Mordell–Tornheim–Witten sum derivatives
In previous work the present authors and others have studied Mordell-Tornheim-Witten sums and their connections with multiple-zeta values. In this note we describe the numerical computation of derivatives at zero of a specialization originating in a preprint by Romik, and the experimental evaluation of these numerical values in terms of well-known constants.
متن کاملOn Mordell-tornheim Zeta Values
We prove that the Mordell-Tornheim zeta value of depth r can be expressed as a rational linear combination of products of the Mordell-Tornheim zeta values of lower depth than r when r and its weight are of different parity.
متن کامل